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By using the principle of relativity alone (no assumptions about signals or light) 
it is shown that a relativisitic group Of linear transformations of a spacetime 
plane is, if infinite, either Galilean, Lorentzian or rotational. Th e largest such 
finite group is a Klein 4-group, generate d by space-reversal and time-reversal. 
In the infinite case an invariant of the group, denoted c, appears. When c is real, 
nonzero, noninfinite, then the group is a Lorentz group and c is identified with 
the speed of light. Lorentz transformations are represented through an algebra 
D of iterants that provides a link among C!ifford algebras, the Pauli algebra and 
Herman Bondi's K-calculus. 

1. I N T R O D U C T I O N  

The p u r p o s e  o f  this  p a p e r  is to p rove  a t he o re m abou t  g roups  o f  
t r ans fo rma t ions  o f  R 2 tha t  obey  the p r inc ip le  o f  specia l  relat ivi ty.  The  
theo rem is as fol lows:  

Theorem A.  Let G be  a g roup  o f  l inear  t r ans fo rma t ions  o f  the  real  
p lane  R 2 to itself. Let  0-: R2--> R 2 be the m a p  def ined  by  the fo rmu la  

0-(a, b) = (a,  - b )  

Suppose  tha t  every e l emen t  T c G satisfies the  re la t ion  ( T  o 0-) 2 = I, where  
o denotes  c o m p o s i t i o n  and  ! is the ident i ty  t r ans fo rmat ion .  (We say G is 
m a x i m a l  i f  it satisfies the hypo thes i s  ( T  o 0-)2 = / ,  and  is not  con t a ined  in 
any larger  g roup  tha t  satisfies this hypothes is . )  Then:  

(i) I f  G is m a x i m a l  and  o f  infinite o rde r  then  there  is a cons tan t  c 
tha t  is an  invar ian t  o f  G (c may  be  c o m p u t e d  f rom any e lement  o f  G tha t  
is not  equa l  to plus  or  minus  the ident i ty)  such that :  
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1. I f  c = 0  or c = ~  then G is isomorphic to a group of Galilean 
transformations. 
2. I f  c is real and neither zero nor infinite, then G is isomorphic to 
the Lorentz group for one space dimension and one time dimension. 
3. I f  c is imaginary, then G is isomorphic to SO(2), the group of 
rotations of  the plane. 

These three cases exhaust the possibilities for G of infinite order. 
(ii) I f  G is maximal and of finite order, then G is isomorphic to the 

Klein four-group Z 2 x 12, 

We will explain how the hypothesis ( T  o cr)Z= I corresponds to the 
principle of  relativity in Section 2. The theorem is proved in Section 4. 
Examples and relationships with other formalisms are discussed in Sections 
3, 5, 6, and 7. 

Theorem A is closely related to the results of  Edmund DiMarzio (1977). 
In the case of  a real constant, when G is a Lorentz group, this constant 

corresponds to the speed of  light (in the usual physical interpretation). It 
is remarkable that these physical features appear  inevitably in the abstract 
framework. Our version of the relativity principle makes no assumption 
about limiting velocity, or about the speed of light. 

Along with Theorem A, this paper  also discusses a particular mode of 
representation for Lorentz transformations. This mode uses an algebra D 
that is analogous to the complex numbers. This algebra consists in numbers 
of  the form a + ib with a and b real. 

Multiplication in D is denoted by *, and i * i = +1. Thus (a + ib) * (c + 
id) = ( a c + b d ) + i ( a d + b e ) .  This structure is particularly well suited to 
special relativity in the case where the speed of light is equal to one. In 
Section 3 we show how the Lorentz transformation is given by the formula 

t '+  i x '=  [(1 + iv) l (1  - v2) 'I2] * ( t +  ix) 

when the transformation is between inertial frames with relative velocity v. 
In Section 5 we reexpress D in what I call iterant coordinates [A, B]. 

Here 

[a ,  B] = ((A + B)/2)  + i ( ( A -  B)/2)  and [a + b, a - b] = a + ib 

Thus i = [ + 1 , - 1 ]  in the iterant coordinates, and one can think of i and 
- i ( = [ - 1 ,  +1]) as representing two views of the process 

- . - . - . - . - . - . - . - . - . - . -  

(This process can be seen as a repetition o f [+ ,  - ]  or as a repetition o f [ - ,  +].) 
In the iterant coordinates the Lorentz transformations have the par- 

ticularly simple form 

T[A,  B] = [ K - '  A, KB]  



Transformations in Special Relativity 225 

The physical interpretation of these coordinates comes through the identity 

t + ix=[ t  + x, t - x ]  

In Section 6 we show how the pair [t+x,  t - x ]  can be regarded as two time 
measurements by an observer: (t - x) is the time of emission of a light flash. 
(t + x) is the reception time of  a reflection of this flash from an event E. It 
follows that the event has space-time coordinates (t, x) for this observer. 
The iterant formulation provides a link with the K calculus of Herman 
Bondi (1964). 

Finally, in Section 7 we combine the dual numbers D with the complex 
numbers C to form M = D • C, a four-dimensional space-time. This leads 
directly to the Hermitian formalism, the Pauli matrices, and to quaternionic 
transformations in special relativity. 

In regard to Theorem A, it is worth mentioning that in the case of the 
Klein 4-group, G is generated by space reflection [o-(t, x ) =  ( t , - x ) ]  and 
time-reflection [o-'(t, x ) =  ( - t ,  x)]. Except for this finite case, time is con- 
strained by the principle of  relativity to flow forward. 

2. THE PRINCIPLE OF RELATIVITY 

It is well known that space-time coordinates for inertial frames are 
related by a linear transformation. Furthermore, spatial coordinates perpen- 
dicular to the direction of motion are left invariant. Consequently, it suffices 
to consider linear transformations of R, 

(t', x') = T(t, x) 

where x corresponds to the direction of  motion, and t corresponds to the 
(direction of) time. 

Call the coordinates (t, x) and (t', x') compatible if the positive direc- 
tion for x is also the positive direction for x'. See Figure 1. 

J b~ 

~ x  i 

Fig. l. Compatible coordinates. 



226 Kauffman 

f 

) ( 
Fig. 2. Mirrored coordinates. 

It may also happen that the positive direction for x is the negative 
direction for x'. In this case, call the coordinates mirrored. See Figure 2. 
The following is then a mathematical form of the principle of special relativity: 

(0) I f  T is a transformation of  inertial frames, then T is invertible, 
and its inverse is also a transformation of these frames. 

(1) I f  0, 0', 0" are three compatible frames and T:0->0' ,  T': 0'--> 0", 
T": 0--> 0" are the transformations relating them, then T"=  T'o T. 

(2) I f  0 and 0' are mirrored frames and S:0--> 0' is the corresponding 
transformation, then the transformation from 0' to 0 is also given by S, and 
[by (0)] S o S = I. 

Statement number  (2) embodies the simplest instance of the intuitive 
relativity principle. The mirrored frames are symmetrical with respect to 
each other. Hence they must be related by the same transformation. 

It is worth noting that while we are allowed to reflect the space 
coordinate via or(t, x ) =  ( t , - x ) ,  we have no such freedom to reverse the 
direction of  time. 

Since tr: R 2--> R 2 interchanges compatible and mirrored coordinates, it 
follows from (0), (1), and (2) that (Totr )2=I  whenever T:R2-~R 2 is a 
relativistic transformation of  compatible frames. 

Hence we conclude that the set G of all relativistic transformations of  
compatible frames (all compatible with one another) forms a group under 
composition. And ( T  o tr) 2= I for every T in (3. 

This completes the explanation of our choice of  hypotheses for 
Theorem A. 

3. P R E L U D E  TO T H E O R E M  A 

In this section we show how to deduce the Lorentz transformation in 
a special context. In Section 4 this argument will be generalized to become 
the proof  of  Theorem A. 
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Let D = { t +  ix[t, x E R} .  Here i is a symbol  satisfying the identity i * i = 
+1.  (Mult ipl icat ion in D is denoted  by *.) D will be referred to as the set 
o f  dual numbers.  The dual numbers  are formally similar to the complex  
numbers.  Thus mult ipl ication is given by the formula  (a  + i b ) *  ( e +  i d ) =  

(ae  + bd)  + i ( a d  + bc).  Conjuga t ion  is defined by the formula  

o'(a + ib) = (a  + ib) = a - ib 

Note  that  a 2 -  b 2 = (a  + ib) * (a  - ib). Thus D embodies  the hyperbol ic  
metric o f  Einstein 's  special relativity. 

The dual  numbers  may  also be identified with a subalgebra o f  the Pauli 
algebra. This connect ion  will be discussed in Section 7. 

In this section we derive Lorentz t ransformat ions  by adopt ing  the 
following. 

A s s u m p t i o n  ~ .  Suppose  that G is a g roup  o f  t ransformat ions  o f •  such 
that  (1) for  each T in G there is an element w of  D such that  T ( z ) =  w * z 

for all z in D and (2) ( T  o 0.)2 = I for each T in G. 

Proposit ion 3.1. Assumpt ion  D implies that  G is the Lorentz  group 
(light speed normalized to 1). 

P r o o f  Let T ~ G  and w e d  so that  T ( z ) = w * z  for all z E D .  The 
condi t ion ( T  o 0-) 2 = I implies that w * (w * s = z for all z in D. Since 
X *  Y = X *  ~ " a n d R = X  for  a l l X ,  Y i n D ,  w e h a v e  ( w * f f ) * z = z  for 
all z in D. This implies that  w * ~ = 1. 

To obtain the specific form of  T, let w = a + ib. Then w * ~ = 1 implies 
that aa - bb = 1. Hence w = (1 + iv)~(1 - v2) w2 where v = b / a .  Note  that  v 
has the dimensions o f  velocity (if we interpret b as posit ion and a as time). 
Then 

T (  t + ix) = [(1 + iv)~(1 - v2) 1/2] * ( t + ix) 

T ( t +  ix) = [ ( t +  v x ) / ( 1  - v2)'/2] + i [ ( x +  v t ) / ( 1  - v2) '/2] 

Thus T is a Lorentz t ransformat ion for frames with relative velocity v, and 
light speed equal to 1. This completes the p r o o f  o f  the proposi t ion.  �9 

R e m a r k .  In  this derivation we did not  assume that  T left the metric 
z * ~ =  ( t +  ix)  * ( t - i x ) =  t 2 - x  2 invariant. Nevertheless,  this invariance is 
a consequence  o f  the restriction w * ff --- 1. That  is, 

: r ( z )  �9 : r ( z )  -- (w �9 z ) ,  (w �9 z)  

(w * z)  * (w * z)  = (w * ~v) * ( z  * e)  

.'. T ( z )  * T ( z )  = z * 

Hence l '2  - -  X t2  = t 2 - -  X 2 .  
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The Lorentz transformations are a consequence of the use of  the dual 
numbers. I f  D is replaced by the complex numbers C (where ii = -1 ) ,  then 
T ( z )  = w z  with w~ = 1 implies that T is a rotation of  the plane about the 
origin. This corresponds to part  3 of  Theorem A. 

4. P R O O F  OF T H E O R E M  A 

We now assume that G is a group of 2 x 2 real matrices. Let 

so that 

By hypothesis, T 6 G implies that ( T o o-) 2 = I where I is the identity matrix. 
For any 2 x 2 matrix 

the condition M M  = I is equivalent to the condition M = M -~. This, in 
turn, is equivalent to 

(: :) 
where A = a c -  b d  (the determinant of  M).  This forces A = + 1. 

I f A = + l  then 

(: :)=(: :) 
h e n c e a = c , b = d = 0 ,  a n d a a = a c = + l .  Thus M = + L  

I f  M = (To-) has determinant equal to - 1 ,  then a similar calculation 
shows that T (not M but T) has the form 

with a a -  b d  = 1. Thus we have the following. 

L e m m a  4.1.  Let T be an invertible 2 x 2  real matrix with (To- )2=I  
where 

o - = ( ;  __~) and o - ' = ( - ~  ~) 
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Then  (1) D e t ( T )  = - 1 implies  that  T is O- or  O--1 ; (2) D e t ( T )  = + 1 implies 
that  

where  aa - bd = 1. 

a 

Returning to the p r o o f  of  Theorem A, if G contains o- and  G also 
contains  an e lement  T with de te rminan t  equal  to +1,  then To- belongs to 
G. Hence  [(To-)o-] 2= 1. Thus  T T =  1. Hence  T is +1. 

Using a similar a rgument  with o-', we obtain  the following. 

Lemrna 4.2. Let G be a group  of  2 • 2 matr ices such that  (To-) 2 = I for  
all T in G. (o- and O-' are as above.)  I f  o- or  O-' belongs to G, then G is 
i somorphic  to one of  the fol lowing groups:  

{1, ~r}----Z2 

{1, o"} ~ 712 

{1, - 1 ,  O-, o"} ~71 2 xZ2 

(The latter is referred to as the Klein 4-group.)  
Having  classified those  groups containing o- or tr', we now assume 

(using 4.1) that  all e lements  o f  G have the form 

with aa - bd = + 1. 
Suppose  T '  is also in G. 

b) 

Then  TT '  belongs to G, and 

T T ' = ( d  a]\d'b~(a' a')-b' ( a a ' + b d '  ab '+ba '~  
- \ da' + ad'  db' + aa' / 

must  also have  equal  e lements  on the main  diagonal .  Therefore  aa '+ bd '=  
db' + aa'. Hence  bd '=  db'. Therefore d /  b = d ' /  b'. 

It  m a y  h a p p e n  that  G = + / ,  in which case these formal  fract ions contain  
no informat ion .  Otherwise,  the matr ices each have at least one nonzero  
off-diagonal  term. Then  d / b  = d ' / b '  is meaningful ,  taking real values that  
include 0 and  ~ .  
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By using c = ( d / b )  1/2 we can rewri te  T into the  form of  a Lorentz  
t r ans fo rmat ion .  The rest o f  the  a rgument  fo l lows by  specia l iz ing the values  
o f  c. The  t rans la t ion :  

T =  d ' 

Let  c = ( d / b )  1/2 and  v = d /a .  

This looks  l ike a Lorentz  t r ans fo rmat ion ,  and  it is a Lorentz  t r ans fo rma-  
t ion when  0 < c < oe. I f  c = oo then  

hence  t '  = t and  x '  = vt + x.  This is a Ga l i l e an  t rans format ion .  I f  c = 0, then  
d = 0, b # 0 and  again  we ob ta in  a t r a n s f c r m a t i o n  o f  Ga l i l e an  type.  Hence  
the g roup  o f  t r ans fo rma t ions  with this invar ian t  is i somorph i c  to the  G a l i l e a n  
group.  The  i s o m o r p h i s m  in te rchanges  space  and  t ime coord ina tes .  

I f  - o o < c 2 < 0 ,  then  T preserves  the  form c2t2+x 2 and  hence  is a 

ro ta t ion  o f  the  (Iclt, x) plane .  
These  observa t ions  and  l emmas  combine  to give the p r o o f  o f  

Theo rem A. 

Remark. W h e n  c = 1 we have d = b, hence  

The  a lgebra  o f  these matr ices  (wi thout  res t r ic t ion on a and b) is i s o m o r p h i c  
to the dua l  numbers  D i n t roduced  in Sect ion 3. In  this form, each  po in t  in 
space- t ime  is r ep resen ted  by  a matr ix  

(: t) 
The Lorentz  t r ans fo rma t ions  are the suba lgeb ra  of  matr ices  sat isfying t i -  
x 2= 1. 

5. R E M A R K S  O N  T H E  D U A L  N U M B E R S  

We have  seen in Sect ions  3 and  4 tha t  the dua l  numbers  D =  
{ a +  ibli * i = +1} bea r  a c lose  re la t ionsh ip  with specia l  relat ivity.  Lorentz  
t r ans fo rma t ions  are r ep resen ted  by  T(z )  = w * z, where  w = 
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(1 + i v ) / ( t  + v 2) 1/2 In this section we make some remarks about the pattern 
of  this number system. 

Consider the following linear pattern: 

. . .  A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B .  . . 

This can be seen as an endless repetition of A B  or as an endless repetition 
of BA.  Accordingly, we choose the notations [A, B] and [B, A] to represent 
the two views of  the pattern. Call [A, B] the conjugate of [B, A]. And write 
[A, B] = [B, A]. 

There is an algebra for combining these patterns: 

[A, B]+[C,  D ] = [ A + C ,  B +  D] 

[A, B] * [C, D] = [AC,  B D ]  

If  we take the elements of these patterns to be real numbers,.then the 
iterant algebra is isomorphic to the dual numbers D. The isomorphism is 
given by the correspondence a + ib = [a + b, a - b]. Thus 1 = [1, 1] and i = 
[ 1, - 1 ]. See Comfort  (1984), Kauffman (1980), Kauffman and Varela (1980), 
and Kauttman (to appear) for further comments. 

This context for the iterant algebra invokes the concept of multiple 
viewpoint. The iterant [A, B], and its conjugate [B, A] are mathematical 
analogs of  two mutually exclusive perceptions of  a single form. In this 
model, form is represented by the periodic p rocess . . .  A B A B A B A B A B A  . . . .  
Just so, for an observer, a form or object with spatial and temporal extent 
is seen as an (apparently) periodic series of  observations--all  views of one 
whole. 

In the next section we shall see that, for an observer, an event in 
space-time can be idealized as two time-measurements: one of signal sent, 
one of  signal received. In ~this form an object (proCess) becomes a series of 
such observations in the form: . . .  SEND, RECEIVE, SEND, RECEIVE, 
SEND, RECEIVE . . . . .  The crucial choice of  what is regarded as sent, and 
what is regarded as received is determined largely by context. This context 
includes agreement throughout the given community of observers. Iterant 
algebra abstracts only the simplest elements of  this complex process. 

6. DUAL NUMBERS AND THE K CALCULUS 

The last section remarked on the mathematical pattern of the dual 
numbers, and introduced the iterant coordinates: 

[A, B] = [ (A+ B)/2] + i [ ( A -  B)/2]  

[ a + b , a - b ] = a + i b  
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An event (t, x) is represented in D as t+ ix = [t+x,  t - x ] .  One physical 
interpretation of the iterant coordinates [t+x,  t - x ]  is given by Herman 
Bondi (1964) in the context of his K calculus. Here is a direct quote [Bondi 
(1964), pp. 116-118]: 

Let  Al f red  use  coord ina tes  t, x and  Brian coord ina tes  t', x ' ,  so  tha t  Al f red  is 
x = 0, Br ian  is x '  = 0, and  at  the mee t ing  of  Al f red  and  Br ian  t = t '  = 0. C o n s i d e r  
an  event  which ,  seen  by  Alfred,  is beyond  Brian  [Figure  3; Bondi ' s  F igure  23]. 
Al f red  emits  a r ada r  pu lse  at  t ime  t - x and  receives  i t  back  at  t ime t + x so tha t  
he ass igns  coord ina tes  t, x to the event.  S imi lar ly ,  Br ian  emits  a pu lse  a t  t ' - x '  
and  gets i t  b a c k  at  t'+x'. 

But in fact  Brian emits  his pulse  as Al f red ' s  pulse  passes  h im  and  receives  
it as the re tu rn ing  pulse  to Alf red  passes  him.  Hence  t ' - x '=  K ( t - x )  and  
t+x=K(t '+x') .  

In Bondi's terminology the observers Alfred and Brian are separating 
at constant velocity. The lines labeled Alfred and Brian in Figure 3 represent 
their respective time coordinates (world lines) in two-dimensional space- 

Alfred 

% 
% 

% 

r S 

f 

~ t + X l  

S 

Brian 

Fig. 3. The Lorentz  t r ans fo rmat ion .  
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time. The constant K is the ratio K = (interval of  reception)/(interval of  
transmission). Thus, if Alfred sends a pulse at time ( t - x )  on his world 
line, and the pulse is received at time ( t ' - x ' )  on Brian's world line then 
K = ( t ' - x ' ) / ( t - x ) .  

The rest of  Bondi's argument uses the geometry of  the figure plus the 
consequence (of  the principle of  relativity and constancy of  light speed) 
that K remains the same when the roles of  Alfred and Brian are inter- 
changed. In this way the Lorentz transformation takes the form 

[t '+x' ,  t ' - x ' ] = [ K - l ( t + x ) ,  K ( t - x ) ]  or 

T[A, B] = [K-1A, KB] 

This is exactly the form of  the Lorentz transformation in iterant coordinates. 
It is useful to derive the relation between K and the velocity v (v is 

the relative velocity of  the two frames). Since the Lorentz transformation 
is represented by (1 - iv)/(  1 - v 2) 1/2 for this geometry, we have (1 - iv)/(1 - 
v2)1/2=[K -1, K]. Hence ( 1 - i v ) l ( 1 - v 2 ) U 2 = [ ( K - ~ + K ) / 2 ] +  i[(K - I -  
K)/2] .  Therefore v = ( K - K - I ) / ( K + K - I ) = ( K 2 - 1 ) / ( K 2 + I ) .  This 
relationship can be derived directly in the K calculus by considering another 
thought experiment involving transmission and reception (Bondi, 1964, p. 
103). 

These remarks exhibit the physical meaning of the iterant coordinates. 
From the point of  view of  a given observer, an event is indexed by a pair 
[A, B], where B is the time of emission of  a signal, and A is the time of 
reception of another  (correlated) signal. It is through the patterning of such 
pairs that we create descriptions of  the world of  events. 

7. C O M B I N I N G  DUAL NUMBERS AND COMPLEX NUMBERS 

Four-dimensional space-time can be obtained by combining the com- 
plex numbers C with the dual numbers D. We can also go to four-space 
directly by remarking that in the formalism t + ix the i represents a vector 
direction in three-dimensional space. As this leads directly to the notion of  
a Clifford algebra, we examine this point of  view first. 

See Figure 4. Here i is written as a linear combination of basis vectors 
o-1, o-2, o-3 for Euclidean three-space. The basis vectors are orthogonal and 
of unit length. It is assumed that i has unit length, hence x2+y2+z  2= 1. 

In the dual numbers, and in order to represent Lorentz transformations 
we assumed that i * i = + 1. I f  we assume that this algebraic structure can 
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Fig. 

O 

4. Lorentz  t r ans fo rm {[ t '+x ' , t ' -x ' ]=[K-J ,K]*[ t+x, t -x];  [A,B]*[C,D] = 
[AC, BD]}; i = [1, - 1 ] ~  i * i = [1, 1] = l ; i = x0-1 + y0"2+ z o ' 3 ~ C l i f f o r d  a lgebra  

O'1 ~ Orl ~ 0" 2 :~ 0"2 ~ 0" 3 :~ O" 3 ~ 1 1 

t 
0-1 * 0"2 ~ - -0"2  :g 0-1 

O'1 :g 0"3 ~ - -0 -3  ~ 0-1 

0"2 * 0-3 ~ - -0"3 * 0"2 

b e  e x t e n d e d  t o  a l l  t h e  v e c t o r  d i r e c t i o n s  i n  t h r e e - s p a c e ,  t h e n  i t  f o l l o w s  t h a t  

i 2 = or 2 = cr~ = 0-3 2 = + 1 ( x  2 = x * x )  

i = xo'l + yo2 + zo-3, x2 + y2 + z 2= 1 

1 = i * i  

[ x 2 +  y 2 + z 2 + ( o  ". * o r 2 +  ~r 2 * t r , ) x y \  

l - - |  * 
\ + (~r2 * ~3 + ~3 * o~2)yz/ 

.'. o-i * ~ = - t r ~  * o-i, i # j  
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This means that  the unit directions must  form a Clifford algebra. The 
simplest model  is the Pauli algebra where 

0 ~ 
( t + x  y+(-1) ' /2z~  

E = t + x ~ 1 7 6 1 7 6  t - x  / 

In this way an event is represented by a Hermit ian matrix H (above). 
It is curious to note that  this matrix appears  as a display o f  an element 
t+ ix cD where t+ i x=[ t+x ,  t - x ]  is displayed on the main diagonal  in 
iterant form, while y + ( -  1 )~/2z is displayed on the minor  diagonal  in t andem 
with its complex  conjugate.  

In this way we obtain a mapping  of  D x C into convent ional  space-time 
so that 

M = D x C ~ space-t ime 

( t+ix,  y+(_l)~/2z)  ' , ( t + x  y+( -1 ) l / e z )  
y - ( - 1 ) l / 2 z  t - x  / 

By defining s: M ~  R v i a  the formula  s(Z, W)=  Z * f t . -  WW, we retrieve 
the space-t ime interval: 

s[x + it, y + ( -  1 ) l/2z] = t 2 - x 2 - -  y2 _ z 2 

(Note  that this corresponds  to the determinant  o f  the Hermitian matrix.) 
A generalization o f  the argument  in Section 3 shows how to derive the 

form of  the Lorentz t ransformat ion in the Pauli algebra: 
Let T ( E ) =  A * E * B where E = t - t - X 0 - 1  + yo'2 + 70"3 is an event, and A 

and B are given elements o f  the Pauli algebra. In order  for T to be a Lorentz 
t ransformat ion it is necessary that (TO") 2 = I where ~r denotes conjugat ion.  
Hence 

A(Aff~B)B = E, VE 

A(B~..,A)B = E, VE 

(AB)E( ,4B)  = E, VE 

Therefore A/~ = 1, and by normalizing the radius we can take A = B with 
A A  = 1. Thus T(E)  = AEA. (Dropping  the use o f  *.) 

In the Hermit ian formalism this corresponds  to the fact that  SL(2, C) 
double  covers the Lorentz  group.  Quaternionic  formalism is obtained by 
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writ ing an  event  in the  form 

e = ( - 1 ) l / 2 t + x i + y j + z k  

where  i =  (-1)1/20-1, j = ( - - 1 ) 1 / 2 0 - 2 ,  k = ( - 1 ) 1 / 2 0 " 3  . 

Here  i, j ,  and  k genera te  the quatern ions .  In  a sequel  to this p a p e r  we 
shal l  examine  the re la t ionsh ips  among  these  ideas  and  the ma thema t i c s  o f  
twis tor  t heo ry  (Penrose ,  1977). Complex i f i ca t ion  o f  the  He rmi t i an  fo rma l i sm 
leads  into the  geomet ry  o f  twis tor  space.  
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